Change of polarity for periodic waves in the variable-coefficient Korteweg-de Vries equation
نویسنده
چکیده
We examine the variable-coefficient Kortweg-de Vries equation for the situation when the coefficient of the quadratic nonlinear term changes sign at a certain critical point. This case has been widely studied for a solitary wave, which is extinguished at the critical point and replaced by a train of solitary waves of the opposite polarity to the incident wave, riding on a pedestal of the original polarity. Here we examine the same case but for a modulated periodic wave train. Using an asymptotic analysis, we show that in contrast a periodic wave is preserved with a finite amplitude as it passes through the critical point, but a phase change is generated causing the wave to reverse its polarity.
منابع مشابه
Forced oscillations of a damped Korteweg-de Vries equation on a periodic domain
In this paper, we investigate a damped Korteweg-de Vries equation with forcing on a periodic domain $mathbb{T}=mathbb{R}/(2pimathbb{Z})$. We can obtain that if the forcing is periodic with small amplitude, then the solution becomes eventually time-periodic.
متن کاملA Novel Approach for Korteweg-de Vries Equation of Fractional Order
In this study, the localfractional variational iterationmethod (LFVIM) and the localfractional series expansion method (LFSEM) are utilized to obtain approximate solutions for Korteweg-de Vries equation (KdVE) within local fractionalderivative operators (LFDOs). The efficiency of the considered methods is illustrated by some examples. The results reveal that the suggested algorithms are very ef...
متن کاملThe tanh method for solutions of the nonlinear modied Korteweg de Vries equation
In this paper, we have studied on the solutions of modied KdV equation andalso on the stability of them. We use the tanh method for this investigationand given solutions are good-behavior. The solution is shock wave and can beused in the physical investigations
متن کاملNew analytical soliton type solutions for double layers structure model of extended KdV equation
In this present study the double layers structure model of extended Korteweg-de Vries(K-dV) equation will be obtained with the help of the reductive perturbation method, which admits a double layer structure in current plasma model. Then by using of new analytical method we obtain the new exact solitary wave solutions of this equation. Double layer is a structure in plasma and consists of two p...
متن کاملGeneration of large-amplitude solitons in the extended Korteweg-de Vries equation.
We study the extended Korteweg-de Vries equation, that is, the usual Korteweg-de Vries equation but with the inclusion of an extra cubic nonlinear term, for the case when the coefficient of the cubic nonlinear term has an opposite polarity to that of the coefficient of the linear dispersive term. As this equation is integrable, the number and type of solitons formed can be determined from an ap...
متن کامل